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ABSTRACT

" __ M. Kress proved for a special class of Location-Scale probability distributions there always
U
U

LTS

exists a probability ievel for which the Chance Constrained Critical Path (CCCP) remains unchanged
for all probabilities greater than or equal to that value. His chance constrained problem has zero-order

decision rules and individual chance constraints.

This paper extends his results to most of the common probability distributions. vz : L
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Moshe Kress [1] studied the Chance Constrained Critical Path (CCCP) problem with zero
order decision rule and individual chance constraints. He proved that for a class of Location-Scale
probability distributions there always exists a probability level for which the CCCP remains unchanged
for all probability values greater than or equal to that level. The purpose of this paper is to extend the

results of [1] to most of the common probability distributions.

The CCCP problem with zero order decision rule and equal minimal probability level can be

formulated as
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where uj's are the start times of the activities. i, j=1.2,..,n arethe durations of activities j's

which are the random variables with marginal distribution function Fip € ij isthe entry in row i, column

v .R. '(1'{:. - ll

(3

R

j of the node-arc incidence matrix of the activity network.

Let F; (B) = inf {t:F(t)=8)

Notice that since the distribution function is right continuous, “inf* can be changed into "min". Now

we can write P(B) into an equivalent deterministic form.
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P.(B) st: { '"°

The dual problemto P1(B) is

Max 3F; (B x

j-1

.ieinj = aj, i=0,1,....m

D,(p) st 1™

where ag=-1,am=1,3 =0, fori=1,2 ., mi.

Since D4(B) is apure network problem, for any given B € (0, 1), a basic optimal solution

X(B) = {x1"(B), x2 (B), ... Xn (B) } of Dy(B) has the property x; (B) is either0 or 1, and {j : x;’(B)

1} forms a critical path for the network of D1(j).

Let P = {px : k = 1,2, ..., K} denote the set of all paths from the source to the sink in the

network, and Jk = {j : arcjis in path Pk }. Then the problem P (B) is equivalent to the following

problem.
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Max ﬁ( )y Ff(ﬁl)y ‘

K1 je Jk

K
YYk=1
Kt
P s.t. Yy 20
k=1,2.,K

Clearly, if k* such that
-1 -1
> Fi (B = max 3F; (B)
je Jie kel jedk
‘wherel = {1,2,...,K},
then yx» = 1, yj = 0 for i # k* is an optimal solution of P (B) , and if we set

< - {1 ifie Jye

0 otherwise

x (B) = {x1°() ., x2"(B) . x3 (B) , .... Xn (B) } is an optimal solution of probiem D1(f).

Lt Vil = SFB,

j e Jy

Ui (B) = 2 qu (B .

jedMnd,

Hlp) - {k V) = Max vim)} .

iel
The following theorem gives a sufficient conditon under which the CCCP remains unchanged
for all probabilities greater than or equal to a level Po.
For the distribution function Fj , denote the support set of F; (supp (Fj)) as the interval
[‘-’i' ﬂ

where yj = sup {v:Fj(y) =0}

;i= inf {v:F(y)=1}
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Theorem: Assume marginal distribution functions Fj,j=1,2,..,n, are continuous and the density )

P U,
-

functions tj > 0, a.e., insupp(Fj).

xi Casel: y; < o, forj=1,2,..,n. b
E k* € H(1),andthereexists a 0 <B <1 suchthat '
) Uie.x® S Upie(®

3 forany Be [B ,1] and ke H(1), \

then there exists @ By < 1 suchthatforany B e [Bo , 1]

Vi) (B) < Vk(B) fork e I

Case2: ?i =+00 , forj=1,2,...,n.

A

@ lfthere existsa 0 < B < 1 suchthatk’ € H(B)
and Ui k(B) < Ui (B)

forany Be [B,1)]and ke I.

S

X8 v v v

or,

b) itk* is such that

U ®
Ilm_ —_>1
U B

for ke I

N
~

Then, there exists a Bo <1 such that for any B e [Bo, 1]

Vi'(B) 2 V(B) for ke I

Proof: Case 1.

Since Fjis a continuous monotone distribution function, f; = Fj'is a Lebesgue measurable

-1
function. Since fj>0 a.e., 1/fj = (F;)'is a Lebesgue measurable function. By the condition of

theorem defining Case 1, Uk k+(B) 2 Uy «(B) forany B € [B 1] and k € H{1). Therefore, for any

Pe [E, 1]andke H(1)

0 sf 1(U;k'(t)- U;jk(t))dt

B
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1
‘n - f (k/;(t) -Vk'(t))dt
B

= V(1) -V’ (1) - V(B + Vi'(B)

LR

By hypothesis Vi (1) = Vk+(1), hence

Vie (B) 2 Vi (B) for any ke H(1)
E f ke H(1), then Vie(1)> V(1)
; and since fj>0 a.e. in supp (Fj), F}1 is a strictly increasing continuous function and so is the sum of
, these whichis Vi(B). Therefore there exists a Bk < 1 such that forany B e [Bk, 1]
Vie (B) 2 Vik(®) -

Lot Po= max{fs, Bifor k e I\H(ﬂ} <1
: Thenfor Be[Bo. 1] kel
‘. Vie (B) 2 Vi (B
" Case 2.a.

Forany B e [ﬁ, 1] andB kel
0< f (Uiext - uLk-(t)) dt

B

5 L7 ,
| = f (k/k-(t) - Vk(t))dt
B

= Vie(B) - Vi(B) - Ve (B) +Vk([§)

D

) A

1 By hypothesis k*e H(B), so we have

Vie(B) 2 Vi(p)
Therefore we can choose f at least equal to B.
)
1. Case 2.b.
lim  Uiex(®)
in T >
Since p» Uk (B)
§ 1
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there exists a B such thatforany B e [B, 1]
U «(B) >1
Uy (B)

+€

that is
Use (B - Ui (B) 2 € Ui (B)

B, 8 . \ B ,
Ef Uk,k‘(t) dt Sf (Uk-'k(t) - Uk'w(t))dt =f (Vk' (t) 'Vk(t))dt
b 3

B

Hence

<V ®-Vi® (Ve B Vi)

Notice that it §i= « andfj>0 a.e.insupp (fj) there existsa Bo <1 such that
B

Ve dt 2 (Vi®-Vie®)/ €

[

B

So, for any B > o,
Vi (B)-V(B) 20

Hence we have obtained a o which satisfies our requirement.

Bemark 1: From the argument of our proof, it is clear that the theorem is also true when the

Fi's satisfy the assumed condition only in a interval of [ ﬂ , where auis a certain real value less than Y.
Bemark 2: When the set of random variables t;, i = 1, 2, . ., n contains both finite support and

infinite support distribution functions, then we can treat it as we did in the infinite support case.

We are now going to show that the location-scale distribution family which Kress [1] studied

satisfies the hypotheses of our theorem.
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TheFj, j=1,2,...,n, forthe Kress family are location-scale distributions with the same

generating distribution &, thatis,

Fi(x) =g(ﬁﬁ) for j= 1,2,...n, where yj, ¢; are the location and scale parameters of Fi

S
respectively.
The inverse of a location-scale distribution of a non-negative random variable is
Fi ® =0 @+h,
where ®-1(B) >0 is the Bth fractile of the generating distribution &.

Let S\= ZO‘]ZO, M= Zp.kz 0.
jedy jedy

Then  Vi(B)=S.2 (8)+Mx
and the following corollary is obtained.
Corollary: Suppose Fj, j=1,2,...,n, are such location-scale distributions, © a non-negative
continuous distribution.
Caset. Llet y=inf{y gly=1}<w
It Ke Isuchthat ke H(1)and
Mie= o i
Then, forany Be [0,1], ke H(1)
U;'.k(B)Z UL.k'(B)
Case2. Let §=+oc'
if k*e Isuch that
Sk*2Sk forall ke I and Mgs>My, forall ke H, where H= {“ Si= r]rela}x Sl{.
then there exists a B such thatfor B e [B, 1] ,k.e H(B) and U;.'k(B)z U;k»(B) forkel.
Proof: Case {. Let ke H(1), then since
Mike 2 My and Vie(1) = Ske @ -1 (1) + Mie = Sic @ -1(1) + My = Vi (1),

we have Si» < Si.
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Theretore vie®)=Sle” @) <sdo @) -vid
Thatis Uy (B)<Ue®  for ke H(1)
Case 2: By hypothesis, we knowif ke H
Ve®=Sc@ B)+Me2S@ (B)+Me= Vi

thatis, Uk k (B) = Uk, k* (B) ()

it kg H:then Sk'>Sk Let L= Sk"sk>0-

Since y=o ,thereisa Bsuch thatforany Pe [fi. 1}, ®- (B)zM—"'Ml'
u
-1
Hence, Vi (B)=S«D (B)+ My
-1 -1
=52 B)+1D (B)+M (=)

-1
254D (B)+Mi=Vi(®)
Combining (+) and («),for g e [3_1]
U x(B) 2 Uy e (B)
On the other hand, because Sk* =Sk for ke I,we can directly conclude
c0-5.l0"0) 250" 0) v,
Ve@ =52 @) sl @) -vi®
which is equivalent to

Use (B 2 Uy (B)

Q.E.D.
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Example 1:

Consider the project network depicted in Figure 1.

W NI NPT 7 I & T T T

Figure 1

Let t1 = t2 have distribution U (0, 1)

f;—(2-x) 0<x<2
t3 ~ density function f3(x)=
° S 3% \ 0 otherwise
ta=t5 ~ density function f4 (x) =f5 (x) = 2x 0<x<1
0 otherwise
2
tg=t7 ~ density function fa () =7 (x) = 3x 0<sxs<1
= g 6 () =17 & {0 otherwise

Then ¥ S 2 < o
By solving the pure network problem D1 (1), we get the optimal critical paths J1=10,2,1,4}

J2 = {0, 2, 3, 4,}. See Figure 2.

() © ©

O
()
® O—©

Figure 2
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the critical path J2 is what we are seeking. By use of the optimal solution corresponding to Jo in Dy
(B) and computing its reduced cost, we can get the minimal probability level Bg = 0, for which CCCP

remains unchanged for all probability values greater than or equal to it.

Example 2:

Consider the project network depicted in Figure 1 but let t; ~ (1 - &) F(x) + & ; G(x) where F(x), G(x) are
the distribution functions of N(0,1) and Exp (1) respectively and ai=i—11-, i=1,2,...7.
+

Since the possible critical paths are J1 ={0,2, 1,4}, J2={0,2,3,4}, J3={0,2,4}, J4={0, 1, 4}, we

have '
Uz.«(B)

im_ -
B=1 U2(B)

>1 fork=1,3,5

So Jp is the desired critical path.
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